

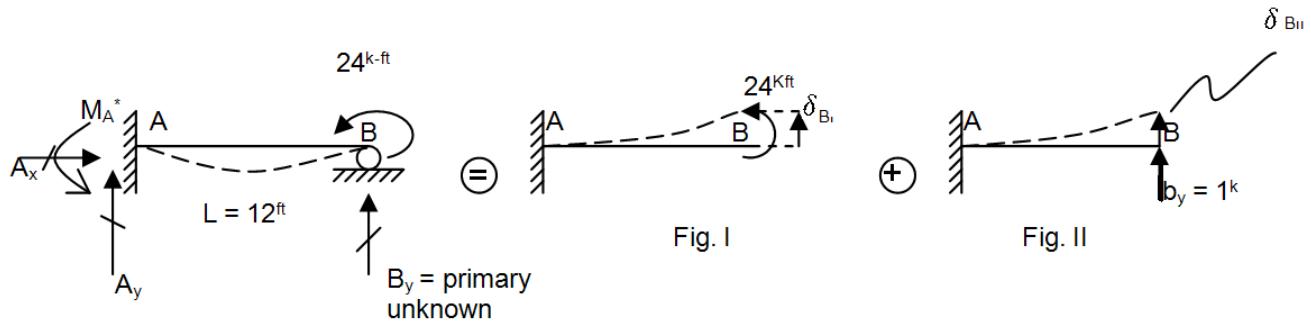
Deflection of “Indeterminate” Structures: Super-Position Method

Main Ideas

- The “indeterminate” structure can be decomposed into “series” (or the sums) of “determinate” structures
- Identifying the primary unknowns (usually are Forces and/or Moments at the supports of the “original, indeterminate” structure)
- Establishing/obtaining the corresponding number of equations (usually relate to the displacements and/or rotations at the supports of the “original, indeterminate” structure)
- Solving for the primary unknowns
- Solving for the remaining unknowns (of the “original” structure) by applying static Equilibrium equations

Example 1: Indeterminate Beam

Find all unknown support reactions of the following indeterminate (1^0) beam.



Vertical deflection at point B
due to actual load B_y applied at point B

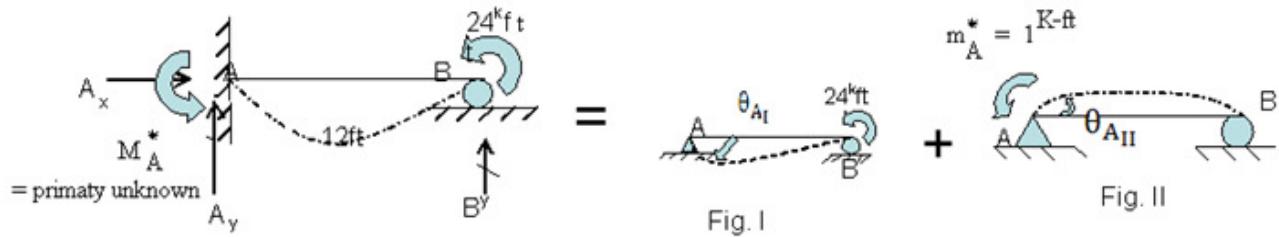
$$(\delta_B)_{\text{Original Structure}} = 0 = \delta_{B_I} + \overbrace{\delta_{B_{II}} * B_y}^{\text{Vertical deflection at point B (in Fig. II) due to unit load by applied at point B}} \dots \dots \dots \quad (81)$$

Vertical deflection at point B (in Fig. II) due to unit load by applied at point B

Notes:

- Since δ_{B_I} (see Fig. I) and $\delta_{B_{II}}$ (see Fig. II) represents the vertical displacement at joint B of the “determinate” structure, they can be easily computed by using V.W. method (see Examples #8, #9 of V.W.)
- After that, B_y can be solved from Eq. (81)
- Finally, the remaining unknown reactions at support A (of original structure) can be found from Static Equilibrium.

Alternate Solution for Example 1

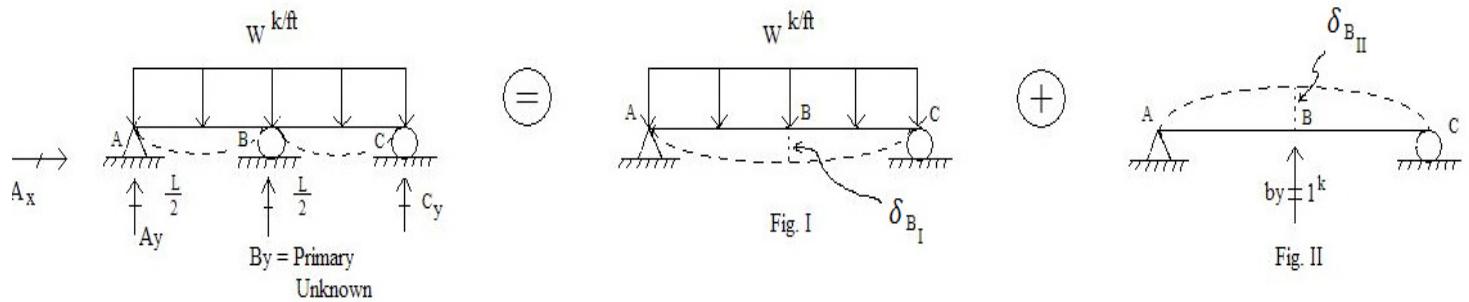


Rotation at joint A (in Fig. II) due to actual moment M_A^* applied at joint A

Notes :

- Since θ_{A_I} (see fig. I) and $\theta_{A_{II}}$ (see fig. II) represents the rotation at joint A of the determinate structure they can be easily computed by using V.W. method (see Examples #10, #11 of VW)
- After that the primary unknown M_A^* (moment reaction at support A of the original structure) can be computed from Eq. (82)
- Finally the remaining unknown support reactions (of original structure) can be found by using Static Equilibrium equations.

Example 2: Indeterminate Beam



Find the unknown support reactions at support joints A, B and C of the “original” structure

Notes:

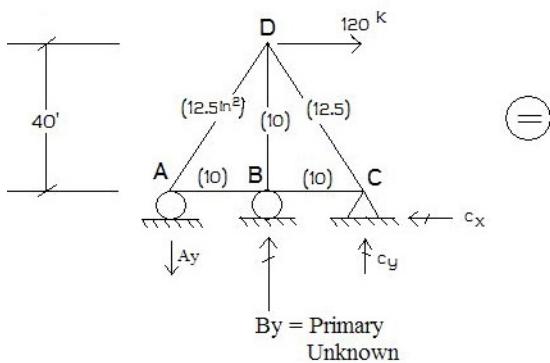
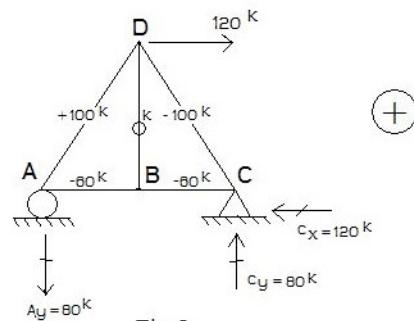
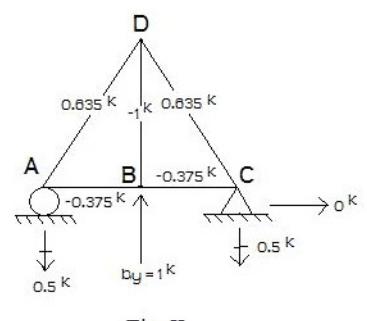
- Since δ_{B_I} (see Fig. I) and $\delta_{B_{II}}$ (see Fig. II) represents the vertical displacement at joint B of the determinate beam, they can be easily computed by using V.W. method (see Examples #5, #12 of V.W.)
- Then, the “primary” unknown reaction B_y can be computed from Eq. (83)
- Finally, all remaining unknown reactions at supports A, B, C (of the original structure) can be found from static equilibrium equations.

Example 3: Indeterminate (1°) Truss

Compute all reactions & bar forces for the truss (shown in the figure).

Given: $E = 30,000 \text{ k/in}^2$

Cross-sectional areas (in in^2) are shown in parenthesis



$$(\delta_B)_{\text{Original Structure}} = 0 = (\delta_{B_y})_I + (\delta_{B_y})_{II} * B_y \quad \text{_____} \quad (84)$$

Where:

Obtain from Fig. II, from Fig. I

$$\left. \begin{aligned} (Q = 1^K \uparrow)(\delta_{BV})_I &= \sum_{i=1}^{\text{All members}} F_{Q_i} * \left(\frac{F_p * L}{AE} \right)_i = \frac{+135}{E} \frac{K^2 \text{ ft}}{\text{in}^2} \\ (Q = 1^K \uparrow)(\delta_{BV})_{II} &= \sum_i F_{Q_i} * \left(\frac{F_Q * L}{AE} \right)_i = \frac{+7.85}{E} \frac{K^2 \text{ ft}}{\text{in}^2} \end{aligned} \right\} (85)$$

Substituting Eq. (85) into Eq. (84), one obtains: $B_y = -16.93^K$ (downward)

Example 4: Indeterminate (1^o) Frame (Similar to Example 7, on V.W.)

Given: $E = 30,000 \text{ k/in}^2$; $I = 288 \text{ in}^4$

Find : All unknown support reactions.

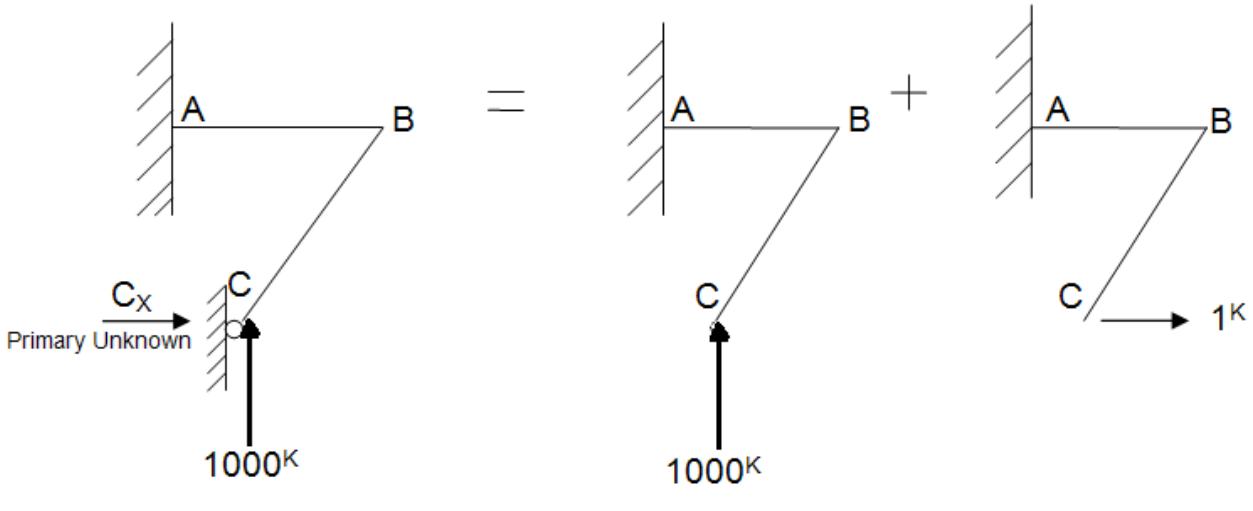
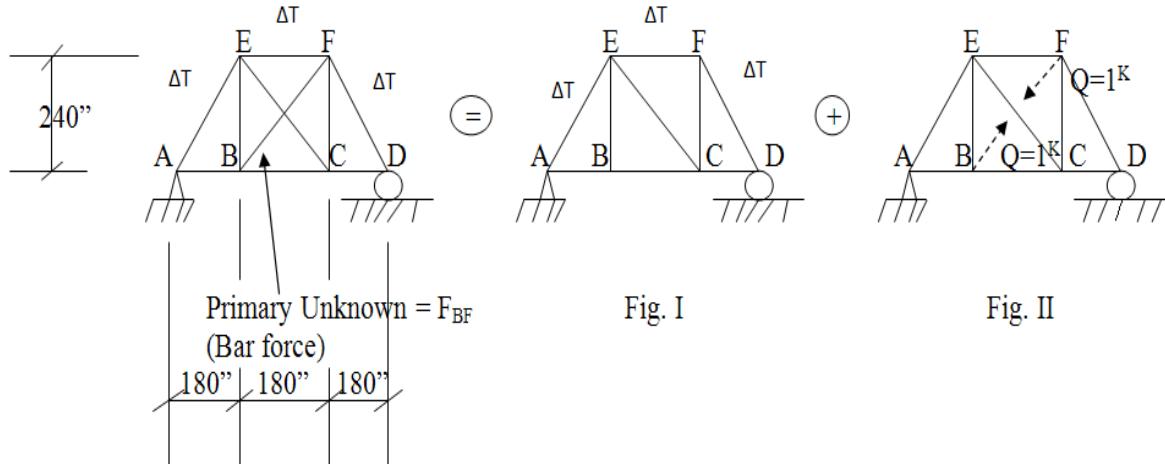


Fig. I

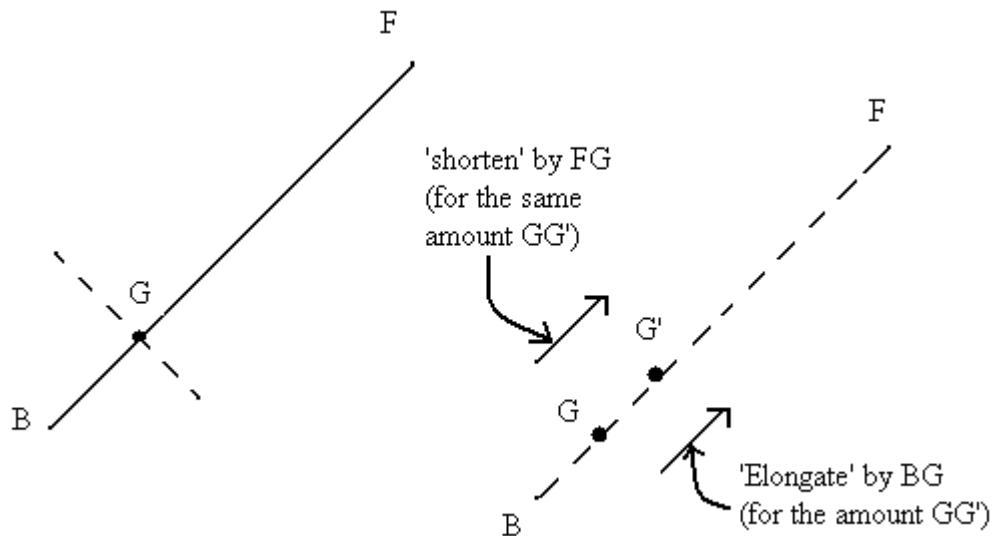
Fig. II

Example 5: Indeterminate (1^o) Truss (due to extra member)

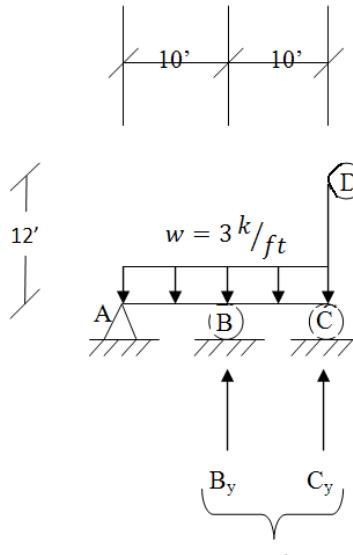
Given: $\Delta T = +60^\circ\text{F}$ for bars AE, EF, and FD; $\alpha = \frac{1}{150,000}$ per $^\circ\text{F}$; $E = 30,000 \text{ K/in}^2$
 Cross - sectional areas (in^2) are given in parentheses = 10 in^2 (for each bar).



$$(\delta_{BF})_{\text{Original Structure}} = (\text{Relative displacement between joint B and F})_{\text{Orig.structure}} = 0 = (\delta_{BF})_I + (\delta_{BF})_{II} * F_{BF} \quad (87)$$



Example 6: Indeterminate (2^0) of Frame structure



\ominus

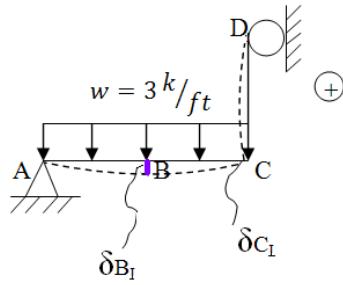


Fig. I

$\delta_{B_{II}}$

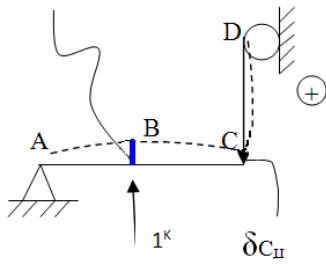


Fig. II

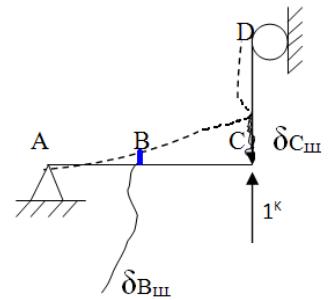


Fig. III

Primary Unknowns

$$(\delta_B)_{\text{Orig. Structure}} = 0 = \delta_{B_I} + \delta_{B_{II}} * B_y + \delta_{B_{III}} * C_y \quad \left. \right\} \text{_____} \quad (88^A)$$

$$(\delta_C)_{\text{Orig. Structure}} = 0 = \delta_{C_I} + \delta_{C_{II}} * B_y + \delta_{C_{III}} * C_y \quad \left. \right\} \text{_____} \quad (88^B)$$

Fixed End Moments (FEM) Due to Applied Loads

Using superposition principle, one obtains:

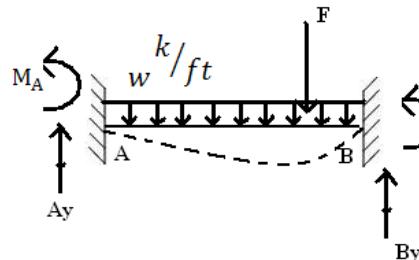


Figure 0

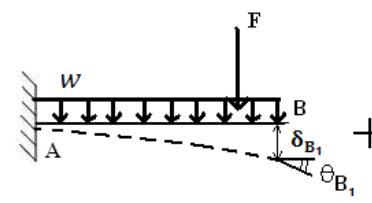


Figure 1

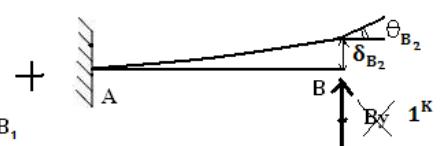


Figure 2

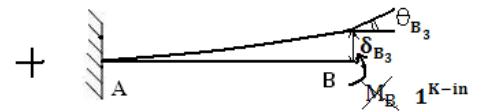


Figure 3

$$(\delta_{B\text{vertical}})_0 \equiv (\delta_{B\text{vertical}})_1 + (\delta_{B\text{vertical}})_2 * B_y + (\delta_{B\text{vertical}})_3 * M_B$$

$$(\theta_B)_0 \equiv 0 = (\theta_B)_1 + (\theta_B)_2 * B_y + (\theta_B)_3 * M_B$$

From the above 2'key' equations, one can solve for the unknown reactions B_y and M_B . (At the final support B). Then, from statics equilibrium equations, the unknown support reactions A_y and M_A (At the final support A) can also be found.

FEM (say, earthquake) Support Vertical Displacement

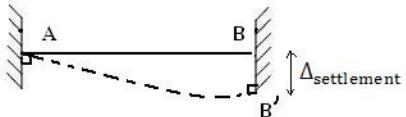


Figure 0

Figure 1



Figure 2

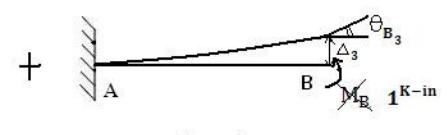


Figure 3

Where using Moment Area Theorems, or

$$\left. \begin{array}{l} \Delta_{B_2} = \frac{L^3}{3}; \quad \theta_{B_2} = \frac{L^2}{2} \\ \\ \Delta_{B_3} = \frac{L^2}{2}; \quad \theta_{B_3} = L \end{array} \right\} \dots \dots \dots \quad (3)$$

Using Eq.(3), then Eqs.(1-2) can be simultaneously solved for

$$B_y = \frac{+12\Delta_{\text{settlement}}}{L^3}$$

$$M_B = \frac{-6\Delta_{\text{settlement}}}{L^2}$$

FEM (say, earthquake) Support Rotation

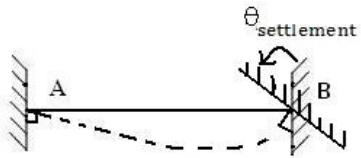


Figure 0

Figure 1

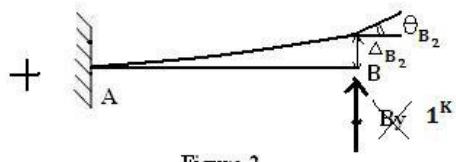


Figure 2

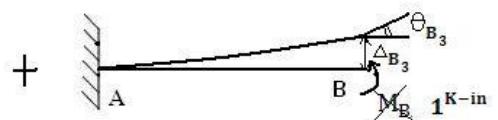


Figure 3

$$\Delta_{B_0} \equiv 0 = \Delta_{B_2} * B_y + \Delta_{B_3} * M_B \quad (1)$$

$$\theta_{B_0} \equiv \theta_{\text{settlement}} = \theta_{B_2} * B_y + \theta_{B_3} * M_B \quad (2)$$

Hence:

$$M_B = \frac{4\theta_{\text{settlement}}}{L}$$

$$B_y = \frac{-6\theta_{\text{settlement}}}{L^2}$$